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The vibrational dynamics of a permanently densified silica glass is compared to the one of an a-quartz

polycrystal, the silica polymorph of the same density and local structure. The combined use of inelastic
x-ray scattering experiments and ab initio numerical calculations provides compelling evidence of a
transition, in the glass, from the isotropic elastic response at long wavelengths to a microscopic regime as
the wavelength decreases below a characteristic length & of a few nanometers, corresponding to about 20
interatomic distances. In the microscopic regime the glass vibrations closely resemble those of the
polycrystal, with excitations related to the acoustic and optic modes of the crystal. A coherent description

of the experimental results is obtained assuming that the elastic modulus of the glass presents spatial

heterogeneities of an average size a ~ £/2.
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Amorphous solids lack the long-range translational pe-
riodicity of crystalline materials. Nevertheless, their struc-
ture presents a residual order on the short and medium
ranges [1]. At short distances the structure can be charac-
terized in terms of interatomic distances and bond-angles
distribution. The medium-range order extends typically
over a length D ~27/AQ, of a few (~5) interatomic
distances, as indicated by the width AQ,, of the first sharp
diffraction peak in the static structure factor, S(Q).
The length scale of the nanometer is believed to be the
relevant one to understand the phenomenology of the glass
transition. In fact, close to the dynamical arrest, the
atomic motion of a supercooled liquid is characterized by
nanometer-sized regions where the molecules move
cooperatively [2—7]. Recent numerical simulation studies
[8-10] have also given some evidence of the presence of
static correlation lengths of a size comparable to the dy-
namical correlations, by investigating either subtle struc-
tural order parameters [8] or point to set correlations
[9,10]. However these quantities are not easily accessible
experimentally, because they are not revealed by standard
two-points correlation functions, such as the S(Q).
Thereby a detailed description of the medium-range order
in glasses is still missing.

Only recently, the development of new experimental
probes has given some evidence of the presence of atomic
regions of nanometric size in a few amorphous materials.
Local symmetries in a colloidal suspension have been
detected by means of a cross correlation analysis using
coherent x rays [11]. Subnanoscale-ordered regions origi-
nating from atomic polyhedra have also been detected in a
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metallic glass employing an electron nanoprobe supported
by an ab initio molecular dynamics simulation [12]. On a
similar glass a wide spatial distribution of the elastic
modulus, on the length scale of the nanometer, has been
detected by means of atomic force acoustic microscopy
[13]. Here we employ an alternative way to gather infor-
mation on the structure of the canonical network-forming
glass of silica, on the spatial scale of the nanometer. Our
approach consists in measuring the vibrational dynamics of
the glass as a function of the wave vector and comparing
the results with those for the corresponding polycrystal,
i.e., the crystalline polymorph characterized by the same
density and local structure.

In the macroscopic limit, at long wavelengths, a struc-
tural glass behaves as a continuum medium and sustains
the propagation of elastic waves. The acoustic modes
persist up to frequencies of a few terahertz [14], close to
and above the frequency, vgp, of the “boson peak” (BP),
the peculiar excess of vibrational states over the g(v) ~ »?
Debye density of states [15-20]. Below vgp, the linewidth,
I', of the excitation, which is proportional to the sound
attenuation coefficient, grows with the fourth power of the
frequency: I' ~ v* [21-29]. The nature of this strong scat-
tering regime is highly debated in the literature. Two main
physical mechanisms have been proposed: (i) the Rayleigh
scattering [30] from fluctuations in the density [31] or in
the elastic modulus [32,33] of the glass; (ii) a resonant
interaction between vibrational soft modes and sound
waves, as predicted by the soft potential model [34,35].
The strong scattering law is reproduced also in harmonic
models where the atoms vibrate around the sites of a
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regular lattice [36] or on the continuum [37] with a random
distribution of interatomic force constants and in models
where the equilibrium atomic configurations are randomly
distributed in space, according to a given pair distribution
function [38,39]. The experiments show that the strong
scattering regime persists up to vgp, above which the
linewidth follows an approximately quadratic dependence
on the frequency [25-29].

In the present Letter the vibrational dynamics of vitreous
silica is compared to that of a-quartz, its crystalline poly-
morph stable at ambient temperature and pressure. The
glass was subjected to a process of permanent densifica-
tion, in order for the two systems to present a similar elastic
response in the macroscopic limit. The studied sample had
a density p = 2.67(2) g/cm?, very close to that of the
crystal [40] (2.649 g/cm?). The vibrational dynamics
of the samples has been probed employing the high-
resolution inelastic x-ray scattering technique, combined
with an ab initio lattice dynamics calculation of a-quartz.

The experiments have been performed at the inelastic
x-ray scattering beam lines, ID16 and ID28, at the
European Synchrotron Radiation Facility in Grenoble,
France. An x-ray beam of 23.7 keV energy is monochrom-
atized using the (12, 12, 12) Bragg reflection of a Si single
crystal in backscattering configuration, providing an over-
all energy resolution of about 1.3 meV. The glass sample
was prepared by permanent densification in a large volume
press [41]. The hydrostatic high-pressure densification was
carried out in a 6/8-type multianvil apparatus (Rockland
Research Corporation) of the IMEM-CNR Institute in
Parma, Italy. The pressure was first increased at a rate
of 1 GPa/hour up to 8 GPa. The sample was then heated
at 770 K, before releasing the pressure at a rate of
0.3 GPa/hour. The polycrystal sample consisted of a pow-
der with grains of a few microns, obtained by grinding an
a-quartz single crystal (purchased from MaTecK GmbH).
The homogeneity of the powder was controlled by x-ray
diffraction, measured with a CCD camera during the
experiment.

The spectra of the glass were measured at a temperature
of 570 K, in order to enhance the inelastic features with
respect to the elastic line, while the inelastic x-ray spectra
for the powder were acquired at room temperature. The
spectra of both the glass and the powder were analyzed
using a single- and a multiple-excitations model [42]. The
eigenvalues and eigenvectors of the a-quartz dynamical
matrix were computed ab initio on a uniform grid sampling
of the first Brillouin zone, employing density functional
perturbation theory as implemented in the CASTEP code
[43]. The inelastic x rays scattering spectra for the poly-
crystal were then computed in the one-phonon approxima-
tion (further details on the numerical calculation can be
found in the Supplemental Material [42] and in Ref. [44]).

The inelastic component of the spectra at selected
momentum-transfer, Q, values is compared to the ab initio

results in Fig. 1. In the low wave-vectorrange, Q < 2 nm™ !,

we note that the spectra of the polycrystal are broader than
those of the glass. The elastic waves of an amorphous,
isotropic solid in the limit of large wavelengths (low Qs)
have a well-defined polarization, either transverse or longi-
tudinal. In this limit only a single peak, associated to the
longitudinal wave, has a nonvanishing x-ray scattering cross
section. On the contrary, for a single crystal this holds
true only along a few high-symmetry directions. In the
investigated regime, where the wavelength (A <10 nm)
is much smaller than the crystallite sizes (a few microns),
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FIG. 1 (color online). The intensity of the x rays inelastically
scattered by the a-quartz polycrystalline powder (open blue
circles) and by the permanently densified SiO, glass (full black
diamonds) is shown on the energy loss (Stokes) side at room
temperature. The spectra of the glass are properly normalized,
taking into account the Bose population factor for phonons to
ensure a one to one comparison between the glass and the
polycrystal, without any adjustable parameter. The spectra for
the polycrystal obtained from the ab initio lattice dynamics
calculation at the specified wave vectors are plotted as thick
red lines. The vertical lines show the main position and intensity
of specific single-crystal branches and polarizations, the three
acoustic modes corresponding to the lowest energy ones. The
green line in panels (a) and (b) is the fit of the glass spectra to a
damped harmonic oscillation (DHO) function convoluted with
the instrumental resolution function [dashed pink line in panel
(a)]. The red curve in panel (f) is the reduced density of vibra-
tional states of the numerical calculation for the crystal, con-
voluted with the experimental resolution function.
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the effects of the single crystal grains boundaries can be
neglected and the intensity scattered by the polycrystalline
powder, IP°Y, can be approximated by averaging the single
crystal one, [°", over the wave-vector orientations,

(0, hw)=$ [0 i [0 7 40 sin(0)[(0, heo). (1)

Here ¢ and 6 specify the crystal wave-vector direction and
Q its modulus. Because of the directional average, the
intensity scattered by the polycrystal powder can thus
present a non-negligible component arising from quasi-
transverse modes. In fact, the measured spectra of the
polycrystal present a quasitransverse excitation whose in-
tensity is comparable to that of the quasilongitudinal one in
the entire explored wave-vector range (Q > 1 nm™!). The
weight of this additional component is much higher than
expected from a simple extrapolation from the macroscopic
limit [45]. The presence of an important quasitransverse
contribution to the spectrum is confirmed by the ab initio
numerical study, which shows that both transverse modes
contribute to /P (Q, hw) already at the lowest investigated
momentum transfers. At higher wave vectors the poly-
crystal and the glass spectra become very similar, as
observed also for ethanol [46], and present contributions
from both acoustic and optic modes.

The inelastic component of the spectra has been fitted to
a single-excitation model, a DHO function, in order to
estimate its linewidth, I". The linewidths of the two systems
are very similar above a crossover momentum-transfer
0.~2 nm !, as shown in Fig. 2. The small difference at
high Qs has to be ascribed to the inadequacy of a single
excitation fit in this regime, as the spectra are almost
indistinguishable (see Fig. 1). In this range the spectral
width follows approximately a Q? law. In the other limit,
0 < Q., the broadening of the spectra of the polycrystal
has a linear Q dependence, as expected from the linear
region of the dispersion curves. On the contrary, the
sound attenuation of the glass shows the strong scattering
regime, I' ~ Q% as found in previous studies [22-27].
Furthermore, the linewidth of the glass in this regime is
smaller than that of the polycrystal, as already noted from
the inspection of Fig. 1.

The polycrystal excitations disperse up to a Q value of
about 6 nm™!, above which all the modes show only minor
oscillations around constant values, as shown in Fig. 3.
In the figure we plot the map of the measured glass spectral
intensity in the energy—wave-vector space, together with
the peak positions and the results of the calculations for the
polycrystal. The crystal spectrum in the high Q limit,
where it is proportional to the reduced vibrational density
of states g(hw)/(hw)?, is dominated by a pronounced peak
around 9 meV, arising from the lower transverse acoustic
mode at the zone boundary. This feature, the first van Hove
singularity, is located very close to the energy, hwgp, of the
BP in the glass at this density, as shown in panel (f) of
Fig. 1. The vibrational modes of the glass are affected by
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FIG. 2 (color online). The broadening, #I’, of the permanently
densified SiO, glass (red triangles) and of the polycrystal (open
black circles) spectra, is plotted as a function of the momentum
transfer Q. The lines are guides to the eyes, showing the
indicated slopes. The vertical arrow indicates the crossover
momentum transfer Q.. Inset: Inelastic broadening, hl', as a
function of the DHO peak position 72{). The line indicates the IR
limit, reached when the amplitude mean free path equals the
wavelength, corresponding to the condition: I' ~ Q /7. In the
low wave-vector range, Q < Q., the broadening of the poly-
crystal spectrum is close to the IR limit because of the relevant
spectral weight of the quasitransverse acoustic component,
which is absent in the glass spectra in this region.

the absence of translational periodicity, with the conse-
quence that the spectrum of the glass is broader than that of
the polycrystal because its zone boundary is not sharply
defined. From the ratio between the first sharp diffraction
peak width and its position, AQ,/Q, ~ 0.35, we can
estimate this contribution as a further broadening
hAwgp ~ hogpAQy/Qy ~ 3 meV, in good agreement
with the experimental data.

The crossover wave-vector Q. marks the transition from
the long wavelengths regime, where the glass behaves as an
isotropic elastic medium, to a microscopic regime where
the dispersion curves of the glass are similar to those of the
polycrystal, with excitations related to the acoustic and
optic modes of the single crystal, as shown by the selection
of spectra in Fig. 1 and by the color map in Fig. 3. In this
regime the glass spectrum closely resembles that of the
polycrystal, 1P (Eq. (1)), apart from being smoother
because of the wave-vector uncertainty, AQ, associated
to the limited extent of structural order [47]. More pre-
cisely, the Q-resolved vibrations for the glass arise from
the linear combination of the limited subset of the crystal
eigenstates whose wave-vectors have a magnitude |Q| =
Q = AQ/2. The transition between the two regimes
takes place when the probed wavelength crosses the length
& ~2mw/Q,.~ 3 nm, corresponding to about 20 inter-
atomic distances. This length matches the size of the
characteristic structures appearing in the nonaffine dis-
placement field of Lennard-Jones glasses and of silica, as
found in numerical simulation studies [48]. The size of
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FIG. 3 (color online). The color map of the experimentally
determined inelastic intensity of the glass is plotted in the
energy (hw) momentum (Q) space. The color bar is in
counts/s/100 mA units. The dispersion curves of the six lower
energy branches of the polycrystal are shown as full symbols.
The dashed lines are the polycrystal dispersion curves as
obtained from the lattice dynamics calculation. The continuum
lines are linear dispersions corresponding to the longitudinal and
transverse sound velocities expected for the polycrystal in the
macroscopic limit from the elasticity theory.

these structures corresponds to the smaller length down to
which the continuum elasticity theory is able to describe
the response of the glass to a small deformation.

The much-debated Ioffe-Regel (IR) limit [24], defined
by the condition that the wave amplitude mean free path
equals its wavelength, is also reached at Q,, as shown in
the inset of Fig. 2, where Al is plotted as a function of the
peak energy. The comparison with the polycrystal dynam-
ics provides a simple explanation for this apparent coinci-
dence, because the linewidth of the polycrystal satisfies the
IR condition in the entire range below Q.. At Q ~ Q.. the
glass dynamics begins to resemble to that of the corre-
sponding polycrystal and the peak in the glass spectrum
acquires contributions from the transverse modes so that it
cannot be considered any more as the Fourier transform of
a single, albeit attenuated, sound wave. The 0? depen-
dence of the linewidth at higher Qs originates from the
increase of the intensity of the optic modes with increasing
0, as shown in Fig. 1. The intensity of the optic modes
grow faster than that of the acoustic excitations in this Q
range, with the effect of a change in slope of the linewidth
of both the polycrystal and the glass. A close examination
of the Q dependence of the intensity of the vibrational
branches can be found in the Supplemental Material [42].

The wave-vector Q.. can be estimated as the point where
the sound damping of the glass shows the crossover from

the ~Q* to the ~Q? dependence. For the case of vitreous
silica at normal density and ambient conditions, the cross-
over is located at a Q value about a factor two smaller than
for the d-SiO, glass here studied [26], leading to a length
¢ ~ 6 nm. On the contrary, the extension, D ~ 1 nm, of
the medium range order, estimated from the width of the
first diffraction peak in the S(Q), is not affected appreci-
ably by the permanent densification of the glass [49].
The strong dependence of ¢ on the density suggests the
presence of elastic heterogeneities in the glass, whose
average size is markedly affected by the densification
process. The existence of elastic heterogeneities with a
size a ~ 1/Q,. ~ &/2m can justify the I' = AQ* increase
of the sound attenuation as arising from the Rayleigh
scattering [30-33] of the long- wavelength sound waves
from the elastic modulus fluctuations between these
domains [50]. Moreover, the marked density dependence
of the coefficient A [27], finds in this way a natural expla-
nation in terms of the density dependence of £.

In summary, we have shown that the elastic response of a
glass is similar to that of an assembly of small anisotropic
clusters of a size a ~ &/2 of the order of the nanometer.
The glass vibrations vary from the plane waves of a con-
tinuum isotropic elastic body to the excitations of the
corresponding crystalline powder, as the wavelength gets
smaller than £. At these lengths the spectrum of the glass
presents typical features of anisotropic systems, like trans-
verse and opticlike modes. It is suggestive to observe that
the size of the elastic heterogeneities closely matches the
typical sizes of the dynamic heterogeneities in the prox-
imity of the glass transition, which are found in the range
1-3 nm and present a faint increase with the system fra-
gility [3-5,7]. This correspondence can be qualitatively
explained by the fact that the atomic mobility in the super-
cooled liquid is expected to be related to the elastic modu-
lus of the cluster that included the concerned atom in the
glass phase.
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