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1 Introduction

This work is about the dynamics of out of equilibrium systems on the microscopic scale, 

investigated through the X Ray Photon Correlation Spectroscopy (XPCS) technique, and 

the measurements were done at the ID10 beamline of the European Synchrotron Radiation 

Facility (E.S.R.F.) in Grenoble.

In the specific case the system studied is a bi-dimensional gel constituted of gold nano 

particles, confined at the air-water interface, which is a paradigm for a number of interfa-

cial systems of  practical relevance in different fields, including food science, cosmetics, 

medicine, optics, bio-inspired nanotechnology and nanoelectronics industries. As a matter 

of fact, many advances and improvements have been made possible by a deeper compre-

hension of the mechanical response and of the internal dynamics of Langmuir films.

This particular film presents a complex and heterogeneous dynamics, in a meta-stable 

state. Like many other complex systems, such as gels and glasses, its properties depend not 

only on the external conditions at the time of measurement, but also on its past thermal and 

mechanical history, and its evolution presents “ageing” phenomena. As a consequence the 

characterization of the temporal evolution of its dynamics has a fundamental role in the 

comprehension of his peculiar physical properties.

All  these factors contribute to make his study extremely complicated,  rising a lot of 

challenges both from the experimental side, since is difficult to relate results from different 

experiments and defining measurement protocols that account for each factor, and from the 

theoretical point of view, because any model needs to account for a lot of parameters.

During the time of my work at E.S.R.F., I also had the opportunity to apply the XPCS 

technique to other systems, such as structural and metallic glasses. While a detailed discus-

sion of these results is well beyond the scope of the present thesis, some preliminary results  

will be briefly presented.
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The XPCS technique has direct access to the length and temporal scales useful for the 

characterization of out of equilibrium systems, enabling the study of slow and microscopic 

dynamics, not reached by other techniques. It is an extension in the X-rays domain of the 

Dynamic Light Scattering employed in the visible regime spectra. It has been developed 

thanks to the third generation of synchrotron sources, that provide enough coherent flux to 

compensate for the intensity losses due to the isolation of a coherent beam from the total 

radiation emitted by the X-ray source.

The system studied is reviewed in the first part of the Thesis, starting from the sample 

preparation and preliminary characterization obtained from other techniques,

In the third chapter  the theoretical  background to understand the X Ray Correlation 

Spectroscopy Technique is discussed , together with the review of some microscopic dy-

namic models for different kind of system. Then in the last part of the Thesis the XPCS 

measurements will be reviewed and the experiment results discussed.
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Figure 1.1: Energy - length scale space covered by X-ray Photon Correlation 
Spectroscopy (XPCS) related to other complementary techniques (Inelastic Neutron 
Scattering, Raman and Brillouin scattering, Inelastic X-ray Scattering, Neutron  
Spin-Echo Spectroscopy, Photon Correlation Spectroscopy,  Nuclear Forward 
Scattering)



2 The Samples

2.1 The gold nanoparticles

The system under investigation is a 2D film of  Gold nanoparticles, formed at air-water 

interface with the Langmuir-Blodgett technique ([1]). The sample is suspended on the sur-

face of water, where the molecules spread and form a layer one molecule thick.

The gold nanoparticles stabilized with a coating of dodecanethiol (Fig. 2.2 and 2.1) were 

provided by Prof. Ruggeri and his co-workers (University of Pisa), following the procedure 

described in Refs. [2] and [3].

After the preparation the particles are characterized by a 7nm diameter, but after a month 

in which the suspension was stored at room temperature ( ~24°C) they tend to form bigger 
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Figure 2.1: Dodecanethiol structure

Figure 2.2: Electron microscopy high-resolution micrograph (a) and superimposed 
schematic atomic diagram (b) of one gold nano-particle viewed from [100] 
direction. The distances between lattice planes are d111 = 2,35 Å and d200 = 2,03  Å. 
Image taken from Ref. [3].



aggregates of about 80 nm. This transition is clearly seen by the change in colour of the 

suspension (Fig. 2.3), that goes from red to violet/blue. 

This change in size has been checked by various techniques as reported in Ref. [4] . Fig. 

2.4 shows the UV-Visible absorption spectra as a function of the wavelength, taken on 

highly diluted hexane solution.

The blue line is the one for the “fresh” sample, while the orange is measured after one 

month: a shift in the absorption peak from 517 to 548 nm, due to the modified surface plas-
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Figure 2.3: on the left, red colloidal suspension of ~7nm  nano-
particles, on the right the suspension after some time. Note how the 
violet-blue aggregated particle fill the top part of the solvent.

Figure 2.4: UV and visible absorption spectra for 7 nm (blue) and 80 nm (orange) nano-
particle suspension, as reported in [4] 



mon resonance peak of gold. The estimated diameter was evaluated from these measure-

ments following the procedure described Ref.  [5], and confirmed by other measurements 

obtained through Scanning (SEM) and Transmission Electron Microscopy (TEM).

2.2 The Langmuir film

2.2.1 The Air-water Interface: the Langmuir trough

The systems usually studied at air-water interfaces are mainly composed by surfactants: 

a large class of  molecules significantly important from a technological and biological point 

of view, the most famous being the common dish soap ([6]).

Surfactants are usually composed by an hydrophilic part (typically polar), commonly re-

ferred  to  as  “head”,  and  one  hydrophobic  (for  example  one  or  more  saturated  alkane 

chains), called “tails”. Such asymmetric molecules naturally prefer the surface of the water, 

where  both  their  part  can  minimize  interaction  energies.  Here  comes  the  name 

“surfactants”. Other typical equilibrium configurations that isolates the tails from the water 

are micelles, where the surfactants form an aggregate suspended in water with the tail in-

sides, or the membranes, where the molecules are disposed in a double layer keeping one of 

the two phases inside (see Fig. 2.5).

The usual  tool  for  manipulating  monolayers  is  the  Langmuir  trough:  a  container  of 

highly polished Teflon, strongly hydrophobic, in which place the water that will constitute 

the substrate for the deposition. Teflon is employed because it's easily cleanable (water sub-

strate purity is critical) and his hydrophobicity ensures a concave meniscus when the trough 

is completely filled with water. This effect reduces the formation of collapses and aggreg-

ates in the film during his preparation.
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Figure 2.5: Examples of equilibrium surfactants configurations: on the left a  
monolayers at the interface on the top, and three examples of micelles, on 
the right a membrane example.



The trough has two movable barriers (in teflon as well), so that the available area for the 

film can be varied, and an internal channels system to control the water temperature (see 

Fig. 2.6).

Historically, the classic monolayer experiments were based on surface pressure-isotherm 

measurements (Fig. 2.7), and the first ones were executed by Agnes Pockels (sister of the 

more famous Alwink, discoverer the eponymous optical effect) in her kitchen, using a bowl 

as a water container, two aluminium strips as movable barriers, and a button to measure 

surface pressure ([7]). She has to be credited for the original design of the trough, later im-

proved  by Lord Raylegh first, Langmuir later (who will win the Nobel prize in 1935 for his 

studies) and then his student Katherine Blodgett. By the way, Agnes Pockel's isotherm of 

stearic acid is still recognized as essentially correct.

A Langmuir monoalyer is then an excellent model for two-dimensional systems: the wa-

ter surface provides an ideally smooth substrate, and two thermodynamical variables, tem-

perature and surface pressure, can be directly controlled.

Fig. 2.7, reports an example of an isotherm cycle characterized by a classical behaviour: 

from right to left we see that reducing the available area, the film this passes through differ-

ent phases (in analogy to the volume for a gas).
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Figure 2.6:  A simple scheme depicting a Langmuir trough: on a water subphase (1) 
surfactants are deposed (2) and compressed by a movable barrier (3). A Whilelmy balance (4) 
measure the surface pressure and gives feedback to the barrier.



Starting in the upper-right inset, when the molecules are far from each other the situation 

is analogue to a gaseous system. By reducing the available area, after a plateau typical of 

phase transition, the tails become near enough end the system enters the “liquid” phase. 

Here the tails start touching each other but the heads are still free to move around, and are  

not very ordered.

Passing to the main curve in the lower part of Fig.  2.7, after another phase transition 

plateau, the heads reach a more ordered state, in analogy with a solid phase, and the system 

becomes more difficult to compress, as seen by the steep increase in the curve that shows 

how the pressure on the barriers increases very rapidly as the area available to each mo-

lecule is reduced.

Upon a further increase of pression, a second “solid” phase is reached, when the tails re-

organize themselves and let the heads reach a more efficient packing order.
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Figure 2.7: Example of Langmuir Isotherms. Reading the graph from right to the  
left it is seen that as the barrier are pulled together, the area available to the 
surfactants shrinks, and the molecules assume different phases. This classical 
case is typical of molecules with no or very weak interaction. From Ref. [1].



2.2.2 Surface Pressure: the Whilelmy balance

In equilibrium condition, the attractive forces between the molecules of the liquid result 

in a net force driving them towards the bulk. This leads them to assume an equilibrium con-

figuration that minimize the exposed surface. This force reacts on every deformation in-

duced on the surface, and it is called surface tension ( γ ). It is defined as the force along 

a line of unit length, where the force is parallel to the surface but perpendicular to the line, 

and it has the dimension of a force divided by a length.

The surface tension is measured by a Whilhelmy balance: a thin rectangular plate sus-

pended halfway through the surface. The forces acting on it will be the gravitational pull, 

the Archimede's push and the effect of the surface tension. 

Let's focus the attention on this last contribute: calling θ  the contact angle between 

the water and the sensor, so the surface tension pulls the sensor parallel to the surface tan-

gent on the contact point. The horizontal component of this force is balanced out from the 

same contribute on the opposite side of the sensor, while the vertical one pulls the sensor 

down towards the water.

Referencing to Fig. 2.8, this net downward force is

F = ρs lwtg −ρH2O hwtg +2γ(t+w)cosθ  (1)
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Figure 2.8:  in the main panel illustrates a Whilhelmy balance sensor. w , 

l  and t  are the total width, length and thickness of the sensor plate, 

θ  the contact angle, and h  the submersed height  In the upper-left 
inset, a simple diagram shows water molecules at the surface: in the bulk the 
total forces result null, instead on the surface a net force towards the bulk of 
the liquid is present.



 

where the first two sum terms account for the weight of the sensor and the Archimede's 

push ( ρs  and ρH2O  are the density of the sensor and the water respectively, and g  

is the gravity acceleration), while the third term is the one due to the effect of the surface 

tension.

Studying  monolayers,  what  is  investigated  is  the  difference  of  the  surface  tension 

between the free and the monolayer-covered interface. It is then convenient to introduce the 

surface pressure Π , defined as the reduction of the surface tension of the liquid due to 

the film:

Π = γ0−γ  (2)

where γ0 is the surface tension of the free liquid surface, and γ is the one that charac-

terize the covered one.

Normally the sensor plate is completely wetted in the water, so that  θ=1 ,  and the 

surface pressure Π  results from Eq. 1:

Π = −Δγ = −
ΔF

2 (t+w)
≃ −

ΔF
2w

if w≫t  (3)

2.2.3 Gel film preparation

The nanoparticles have a more complicated behaviour that the simple surfactants illus-

trated above. Their dodecanethiol coating is hydrophobic:  it stabilizes the particles when 

they are suspended in an organic solvent, keeping them stable by an hard-sphere-like inter-

action.

On the contrary, when spread at the air-water interface, the coating reduces the free en-

ergy of the configuration and keeps the nanoparticles from subsiding in the water subphase, 

but provides also a weak, short ranged attractive interaction between them.

This particular structure gives rise to out of equilibrium dynamics, as can be seen in Fig. 

2.9: an isotherm series of compression/expansion cycles produces an irreversible compac-

tion of the Langmuir film, as can be seen by the increased steep of the measured  Π  

when decreasing the Area A  available to the film.
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To form the Langmuir monolayer, the original suspension in chloroform was further di-

luted again with an equal amount of pure hexane, and then picked up and spread on the wa-

ter surface using a 50 µl Hamilton syringe. The spreading was performed keeping the tip of 

the syringe in contact with the water surface, with frequent changes of position, until a total 

of 3 ml were spread. After waiting 15 minutes for the solvent to evaporate, compression 

started: 5 cycles of slow compressions and expansions between 3 and 5 mN/m were ex-

ecuted to have a better packing in the film. The sample was then brought up to 10 nM/m, at  

a constant room temperature of 18°C.

Being the sample in an aggregated state, the suspension was no more uniform and was 

not possible to know the precise concentration of nanoparticles picked up by the syringe, 

but a good determination of the concentration of spread particles, called packing fraction 

and defined as 

Φ =
Area covered by nano−particles

Total area
 (4)
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Figure 2.9: Surface pressure–area compression isotherm for a 80 nm nanoparticle film. The surface 
layer of gold nanoparticles is initially prepared by a careful protocol of spreading and compression–
expansion cycles. After the preparatory compression–expansion cycles used to improve the packing of  
the film, the surface pressure–area compression isotherm shows an  upturn and a smooth build-up of 
pressure. Insets: time evolution of surface pressure Π  and of the area A  during the 
compression–expansion conditioning cycles. ([8])



can be determined by the surface pressure measurement, as soon as the same compression 

protocol cycle to form the layer is used.

The right side of Fig.  2.10 shows a sample of the film deposited on a silica substrate, 

measured with scanning electron microscopy. 

The deposited layer shows a very diversified morphology with respect to the “fresh” ver-

sion of the sample: big aggregated particles are clearly visible as large black dots, and they 

are distributed between a very inhomogeneous network of smaller ones (in light grey), with 

some large regions of free surface in between (in light grey). Our sample thus shows  a 

fractal hierarchy of network much more complex than the one observed in the experiment 

on the “fresh” system reported in Ref.[9], and shown in the right side of Fig. 2.10. 
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Figure 2.10: Scanning Electron Microscopy images of the gold nanoparticles monolayer deposited on silica. 
The image on the right comes from Ref. [9], the one on the right is the sample analysed in this work. It is 
evident that the sample is no more monodisperse, and the distribution of both particles size and free surface 
between them is broader, and its maximum shifts towards higher values.



3 X-Ray Photon Correlation Spectroscopy

X-ray Photon correlation spectroscopy (XPCS) investigates the relaxation dynamics of a 

system from the measurement of the temporal auto-correlation function of  the scattered co-

herent radiation. 

Indeed, if coherent light impinges on a sample, it produces a grainy diffraction pattern, 

called “speckles” pattern, which is related to the exact spatial arrangements of the scatterer 

units in the material, a mechanism historically used and developed in Dynamic Light Scat-

tering (DLS) experiments ([10]). The same concepts can also be applied to  X-ray radiation, 

so this technique is equivalent to DLS which is a well established method performed with 

visible light. XPCS uses the partially coherent properties of an X-ray beam ([11]).

Let's consider some monochromatic incident radiation in form of parallel plane waves, 

interacting with the sample. Each different part of the sample scatters a spherical wave, and 

all these different contributes interfere at the position of the detector (see Fig. 3.1) which is 

supposed to be very far from the sample (far-field approximation).
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Figure 3.1: Schematic representation of a scattering process:  
the incident plane wave is scattered from r1 and r2, and the 
scattered spherical waves interferes in P



If one or more of the scatterers move, also the collected interfering waves will evolve 

with time, originating fluctuations in the scattered intensity and thus in the “speckles” in 

the diffraction pattern. By monitoring the temporal evolution of the speckles it is therefore 

possible to get indirect information on the dynamics of the system.

Depending on the wavelength of the incident radiation, it is possible to probe the dy-

namics  at  different  length scales.  For instance visible  light  corresponds to  wavelenghts 

λ  that go from 390 to 750 nm, consequently, using visible light it is possible to investig-

ate the dynamics on the space scale of micron and nanometers.

 X-Ray wavelengths  instead are much shorter,  and correspond to wavevector  values 

between 10-3 and several  Å-1, so that dynamics down to the atomic scale can be probed. For 

some samples this  has also the additional  benefit  that  only a negligible fraction of the 

scattered radiation is due to multiple scattering within the sample, which simplifies the in-

terpretation of data. On the downside, the low interaction with matter (the same property 

that prevents the multiple scattering) reduces also the emitted scattered radiation.

These two factors have limited the development of this kind of studies with X-rays until 

third generation synchrotrons have been built, providing enough coherent flux ([11]).

3.1 General Theory of Scattering 
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Figure 3.2: A schematic layout of an X-Ray scattering, with incident, transmitted and scattered X-ray 

beams, sample, and a 2D detector showing an isotropic scattering pattern. k⃗ i  and k⃗ f are the 

incident and scattered wavevectors, respectively. Note the beam stop that prevent the direct transmitted 
beam from impinging on the detector.



A schematic layout of a X-Ray scattering process is presented in Figure  3.2: a highly 

collimated,  monochromatic  X-ray  beam,  formed  by  photons  of  wavelength  λ and 

wavevector k⃗ i of magnitude ∣k⃗ i∣=2π /λ  impinges on a sample and the scattered intens-

ity is recorded by a detector.

Every pixel of the detector collect photons with different wave vectors  k⃗ f , which 

correspond to a  momentum transfer or scattering vector q⃗  than can be defined as

q⃗ = k⃗ i−k⃗ f  (5)

Since we are considering elastic or quasi-elastic scattering , so that ∣k⃗ i∣=∣k⃗ f∣ , Eq. 5 can 

be written as (see Fig. 3.3):

(6)

where 2θ  is the scattering angle between k⃗ i  and k⃗ f , and λ  is the wavelength 

of the incident beam.

3.1.1 Coherent radiation 

In the theory so far we have considered a monochromatic plane wave. This is of course 

an ideal case. As anticipated before the x-ray beam is not perfectly monochromatic, and it is 

usually divergent,  so  that  photons  in  different  part  of  the  beam have slightly different 

phases and/or wavevectors, and this difference increases with the distances between them. 

 22

Figure 3.3: Simple scattering geometry: k⃗ i is the incident  wavenumber k⃗ f is the 

scatttered wavenumber and q⃗ is the momentum transfer or scattering vector

q = ∣⃗q∣ = 2 k sin (
2θ
2
) = 2

2π
λ

sin(
2θ
2
)



For this reasons the resulting signal averages out information on the long distance relations, 

and carries only the information on short range. 

To quantify this  characteristic,  it  is  useful  to  define the concept of  longitudinal and 

transverse spatial coherence. 

Longitudinal spatial coherence takes in account the stability of the wavelength distribu-

tion of the beam: the top part  of Fig.  3.4 shows two wavefronts with slightly different 

wavelengths,  λ  and  λ−Δλ , that start in phase in point P. Travelling towards the 

right part  of the figure,  the two waves build up phase difference due to  their  different 

wavelengths, and after a given distance they return in phase. Defining the longitudinal co-

herence  length  ξL  as  the  distance  of  maximum phase  displacement,  it  follows  that 

2 ξL  must be the lowest common multiple of  λ  and λ−Δλ :

2 ξL = N λ = (N+1)(λ−Δλ) . (7)

Following that (N+1)Δ λ=λ , for small values of Δλ N≃λ/Δ λ  and  eq. 7 be-

comes

ξL =
1
2
λ

2

Δλ
 . (8)

Differently, the transverse coherence describes the loss of coherence due to the angular 

divergence of the beam. Let's start with two waves, A and B, with the same wavelength but 

that propagate in two different directions, separated by an angle θ , as in Fig. 3.5.
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Figure 3.4: Diagram for the definition for the longitudinal coherence: in red 
and blue two different waves with wavelenghts λ and λ+Δλ . The 
waves are in phase at the starting point P, and return in phase after a distance 

2 ξL=N λ .



The two waves are generated by 2 sources separated by the distance D . They are ob-

served in the plane at the distance R . Starting in P where the two wavefronts coincide 

and proceeding along the wavefront, we define the transverse coherence length  ξT  by 

the condition that  2 ξT  is the distance after which the two waves are again in phase. 

Consequently, ξT  will correspond to the maximum phase shift. For small θ  we can 

write 2 ξT θ=λ  and θ=D /R , obtaining:

ξT =
λ
2

R
D

 (9)

Proceeding from these definitions, a coherent sample illumination is reached when the 

maximum Path Length Difference (PLD) for waves scattered by the sample is smaller or 

equal to ξL  and the lateral size of the illuminated sample is comparable to ξT , defin-

ing  the  coherence  volume as  proportional  to  ξL ξT
2 .  This  quantity is  proportional  to 

λ
3 , explaining the difficulty of performing coherent X-ray experiments. 

More in detail, even with radiation emitted from a synchrotron undulator the beam is 

never perfectly monochromatic, and typical values of the bandwidth are  Δλ /λ=10−2 , 

and using a monochromator a resolution of  Δλ /λ=10−4 can be achieved. Assuming 

λ≃1Å this bandwidth give us a longitudinal coherence length of  ξL≃0.5μm , and 

for a source-sample distance R∼20m  and a source size D∼100μm  results a trans-

verse coherence length of ξT≃10μm .  This estimate gives us an idea of the length scale 

 24

Figure 3.5: Diagram for the definition of the transverse coherence. Two 
waves (full and dotted lines) propagate along two directions tilted by an 
angle θ . The two crests of the waves encounter at intervals of 

2 ξT =
λ
2

R
D



compatible with a  coherent illumination, so that the beam spot can be limited to the trans-

verse  coherence  length  to  have  a  determined phase  relations  between all  the  scattered 

waves.

3.1.2 Single electron scattering

The usual approach to derive an expression of the scattered intensity begins with the 

consideration of single electron scattering.

The fundamental quantity measured in a scattering experiment is the differential scatter-

ing cross section d σ/dΩ , which represents the fraction of scattered intensity with re-

spect to the incident one ( d σ ) in the solid angle collected by the detector ( dΩ ). It 

can be expressed in terms of the Thomson scattering length r0 as

d σ
dΩ

=
I sc

ϕ0ΔΩ
= r0

2 P  (10)

where I sc  is the intensity scattered, r0 is

r0 =
e2

4πϵ0m c2
= 2.82×10−5 Å  (11)

and P is the polarization factor, which depends on the polarization of the incident wave 

with respect to the selected plane of scattering ([12]). For an incident linearly polarized 

wave in the horizontal plane P  assumes the following values:

P = {1 vertical scattering plane
cos2

θ horizonthal scattering plane
 (12)

The classical derivation of equation (10) treats the electron as free to move following the 

incident plane electric field (for ex. Ref. [13]), and as a source of a spherical wave whose 

intensity can be evaluated from Maxwell's equations.

It should be noted that the total cross section, as well as the total cross section found by 

integrating  d σ/dΩ  over all possible angles, is a constant, independent of the energy 
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hc
λ

of the incident radiation. In some cases this assumption is no more valid: for ex-

ample if the electron is part of an atom, near the absorption edges of an element (the ener-

gies corresponding to electron transition or ionization potentials),  the interaction of the 

wave with the electron is more complex.

3.1.3 Single atom scattering

Consider now an atom with Z  electrons, whose electron distribution in the volume 

V  is described by a density  ρ( r⃗ ) with  ∫
V

ρ( r⃗ )=Z : the scattered radiation field 

from all the volume V  will be the superposition of the contributions from all the differ-

ent volume elements of this charge distribution, accounting for the phase changes, as in 

Fig. 3.6.
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Figure 3.6: (a) Scattering from an atom. Two incident photons with wavevector k⃗  scatter in 

the direction specified by k⃗ ' , one from a point in the origin and one in the the position r⃗
. The difference of phase between the two is (k⃗−k⃗ ' )⋅⃗r=q⃗⋅r . (b) Scattering from a 

molecule. Here is shown the scattering triangle which relates k⃗ , k⃗ '  and q⃗ .



 The total scattering length of the atom will be

−r0∫ρ( r⃗ )exp (i q⃗⋅⃗r )d r⃗ = −r0 f 0( q⃗)  (13)

where f 0  is called atomic form factor and accounts for the different phases of the vari-

ous spherical waves originated in different places of the sample: taking 2 scatterers separ-

ated by the vector  r⃗ , the difference in the optical path is  r⃗⋅k⃗− r⃗⋅k⃗ '=−q⃗⋅⃗r . In the 

limit q⃗→0 , f 0  takes the maximum value Z , while for q⃗→∞ the different  ele-

ments scatter out of phase, and f 0  decreases to zero. 

Higher complexity levels (molecules for ex.) can be accounted for, adding the f 0(q⃗)  

of different atoms (see Ref. [12] ). 

3.2 Theory of X-Ray Photon Correlation Spectroscopy

The physical processes presented so far are the basics for all the diffraction techniques, 

as X-ray diffraction, inelastic X-ray scattering, X-ray tomography, etc. Now we will move 

on to the specific models for the Dynamic Light Scattering.

3.2.1 Scattering from disordered system

Consider now  N  different scattering objects suspended in space: the position of the 

centre of mass of the particle  j  at the time t  is represented by the vector r⃗ j(t ) . 

Each  one  of  the  different  N  particles  will  contribute  with  different  phases  to  the 

scattered intensity which can be expressed by:

I ( q⃗ ,t )=∣∑
j=1

N

f j (q⃗)exp (i q⃗⋅r⃗ j (t))∣
2

 (14)

To clarify the idea of this situation, consider a prototype situation in which the radiation 

passes through a a pinhole: in the far field approximation (Fraunhofer), the diffraction pat-

tern can be fully described by the magnitude of the Fourier transform of the function de-

scribing the aperture. In the Figure 3.7 (a) is shown a single circle function, and in (b) the 
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logarithm of the squared magnitude Fourier transform. The concentric rings contain in-

formation on the structure of the diffracting object.

When a single object is replaced by many, randomly placed ones (Figure 3.8), the indi-

vidual diffraction patterns interfere with each other, leading to a speckles pattern that en-

codes the spatial arrangement of the objects, superimposed on the single object ring-like 

structure. 

Moving the particles will change the speckles pattern. We can show this by changing the 

position of a single object, marked with an arrow in Figure 3.9.
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Figure 3.7: (a) a single scatterer point. (b) Logarithm of the magnitude of the Fourier 
transform of (a).

Figure 3.8: (c) Distribution of randomly placed scatterer circles (d) Logarithm of the 
magnitude of the Fourier transform of the distribution. Above the characteristic ring of  
the single object diffraction, the speckles pattern is superimposed.



To confront the two speckle patterns, Figure 3.10 shows the intensity profile along the 

diagonal in the two patterns (d) and (f).
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Figure 3.9: displacement of the particle in (e) from his position in 3.8.d.  Corresponding  
logarithm of the magnitude Fourier transform.

Figure 3.10: A displacement of a single particle between 3.8.c and 3.9.e significantly 
changes the speckles arrangement in (d) and (f) , as can be seen in the profile reported 
on the bottom graph.



In an XPCS experiment the detector registers the fluctuating signal of all the moving 

particles. The signal is then analysed through the determination of the intensity-intensity 

autocorrelation function. An example is reported Fig. 3.11.

 The signal A(t )  can have two very different values in two different times t  and 

t+τ ,  A(t )≠A(t+τ) . If the oscillations are due to the movements of the scatterers 

instead of random noise, when τ is very small compared to typical times characterizing 

the aforementioned movements, A(t+τ)  will be very close to  A(t ) , and the devi-

ation of  A(t+τ)  from A(t )  as  τ  increases will be more likely to be non-zero. 

This property can be measured with the autocorrelation function, that confronts the signal 

A(t )  with another version of itself from the future instant t+τ , and can be generally 

defined as

〈A(0)A(τ)〉=lim
t→∞

1
T
∫
0

T

A(t)A(t+τ)dt  (15)

where T  is the total time of observation,  ([10]). 

It is important to note that if the scatterers are separated by a distance larger than the co-

herence lengths, the speckles pattern smooths and the signal resembles the blue average 

line reported in Fig. 3.10. The same limits apply to the distance covered by the scatterers 

between two captions between t  and t+τ .  Thus the maximum Path Length Differ-
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Figure 3.11: a) Intensity of scattered light (arbitrary units) from an aqueous solution of 
polystyrene spheres of radius 1,01 mm as a function of time (arbitrary units). b) Time-
averaged autocorrelation function of the scattered intensity in a) as a function of time in 
arbitrary units. Taken from  Ref. [10]



ence, as defined in  3.1.1 limits the maximum transferred wavevector  qmax  that can be 

observed.

3.2.1.1 Intensity autocorrelation function

The quantity investigated in an XPCS experiment is the temporal autocorrelation func-

tion of the diffused intensity, so eq. 15 becomes:

〈 I S (q⃗ , τ) I S( q⃗ , τ+t)〉τ = lim
T →∞

1
T
∫
0

T

I S( q⃗ , τ) I S (q⃗ , τ+t)dt  (16)

where the intensity I S( q⃗ , τ)  measured at the time  τ  is compared with the intensity 

I S( q⃗ , τ+t)  measured at time τ+t .

As shown in Fig. 3.12, for a small delay time t  the scatterers seem frozen in place, 

reducing eq. 16 to

lim
t →0
〈I S (q⃗ , τ) I S( q⃗ ,τ+t)〉τ = 〈 I S

2
( q⃗)〉τ . (17)

Instead for intervals much larger than the typical times of the particles motion, the two 

positions are completely uncorrelated, and eq. 16 becomes

lim
t →∞
〈I S (q⃗ , τ)I S( q⃗ ,τ+t)〉τ = 〈I S( q⃗ ,τ)〉τ 〈I S (q⃗ , τ+t)〉τ = 〈I S (q⃗)〉τ

2
. (18)
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Figure 3.12:  on the left: general representation of an intensity autocorrelation function. On the 
right: same function plotted in logarithmic scale



Considering now all the N  particles that contributes to the scattered intensity, we ca 

insert the expression of I S from eq. 14 in the expression of eq. 16, obtaining 

〈 I S (q⃗ , τ) I S( q⃗ , τ+t)〉τ = f i 〈∑
i=1

N

(q⃗)exp (i q⃗i⋅r⃗i(τ))∑
j=1

N

( q⃗)exp (i q⃗ j⋅r⃗ j(τ+t))〉
τ

= f i N 2
+ f i N 2

∣〈exp (−i q⃗⋅( r⃗ (τ)− r⃗ (τ+t)))〉τ∣

 (19)

In the second passage we have taken into account the independence of the position of each 

particle,  that  means that  the only correlation that  gives  non zero contributions is  for  a 

particle with itself ([10]).

This quantity is usually normalized and noted as g2(q⃗ , t) :

g2(q⃗ , t) =
〈 I S( q⃗ ,τ) I S(q⃗ , τ+t)〉τ

〈 I S(q⃗)〉τ
2

= 1+∣〈exp(−i q⃗⋅( r⃗ (τ)− r⃗ (τ+t)))〉τ∣
2

 (20)

It cannot be stressed enough that the angled parenthesis indicate a temporal averaging, 

and not one performed on every particle of the sample (the statistical ensemble): since the 

intensity is  measured with a time interval  Δ t ,  the calculation of  g2(q⃗ , t)  is  per-

formed starting from a point  τ0 ,  and multiplying  I S( q⃗ , τ0)  by  I S( q⃗ , τ0+Δτ) . 

This value is averaged with every other starting time τ0 and normalized by 〈 I S (q⃗)〉
2  

to get the value of g2(q⃗ ,Δ τ) . Subsequent values of g2  are then calculated varying 

the delay time Δ τ .

This procedures assumes that the value of g2  is independent from the sample age, so 

that the system will keep the same behaviour during all the time taken from the measure-

ment: a strong hypothesis, true only if the system is ergodic, so that the temporal mean be-

came equivalent to the ensemble one, or in the case where the temporal evaluation of the 

dynamics is slower compared to the time interval used to average the g2 ([14]).

 32



3.2.1.2 The Siegert relation

The experimentally accessible  g2(q⃗ , t)  is linked to the function  g1(q⃗ , t) defined 

as the Intermediate scattering function S (q⃗ , t) normalized by the value S (q⃗ , 0) :

g1(q⃗ , t) =
〈ES (q⃗ ,0)E S

∗
( q⃗ ,t )〉

〈 I S( q⃗)〉
=

S ( q⃗ ,t )
S (q⃗ ,0)

S (q⃗ , t) =
1

N ( f s
2
( q⃗))
∑
n=1

N

∑
m=1

N

〈 f s n(q⃗) f s m(q⃗)⋅exp(i q⃗ (r⃗n(0)−r⃗m(t)))〉r∈V

 (21)

written here for N scatterers, where the angled parenthesis denotes an ensemble average 

over the scattering volume  V  (instead of the previous time average),  f S
2
(q⃗)  is the 

square of the scattering amplitude, and  r⃗n(t )  the position of the n-th scatterer at time 

t . The intermediate scattering function is thus the normalized Fourier transform of the 

density-density correlation function  f s , and describes the decay of the density fluctu-

ations an a length scale defined by 2π/q .

If the scattering volume contains a high number of “domains” moving independently 

one from another, we can treat each scattered electric field as an independent variable. For 

such a system the central limit theorem is valid and his statistic can be described by a Gaus-

sian distribution. In this particular case it can be demonstrated that the g2  and g1  are 

related by the Siegert relation (see Ref. [10] for more details):

g2(q⃗ , t) = 1+β∣g1( q⃗ , t)∣2  (22)

The parameter β  in eq. 22, represents the contrast, and is related to the ratio of the 

coherence volume V c  and the sampled volume V s . The contrast can vary between 

0  and 1  depending on the coherence properties of the beam. 

The condition to reduce the ensemble to one with Gaussian distribution is a common 

one, but it can not be valid any more if the scattering volume is too low: if the scattering 

volume V  can be subdivided into N  subregions of volume small  compared with the 

wavelenght of the incident radiation, then the scattered field can be regarded as a superpos-

ition of fields from each of the subregions, so that
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ES=∑
n=1

N

ES(n) . (23)

As particles move, ES(n)  fluctuates. If, as is often the case, the subregions are suffi-

ciently large to permit particle motion in one subregion to be independent from those in the 

others  regions,  ES  can  be  regarded  as  a  sum  of  independent  random  variables 

ES(1) , ES (2) ,... . In this case Eq.  22 is justified by the central limit theorem so that 

ES  follows a Gaussian distributions. This situation can be achieved using a 2D detector, 

so that each pixel registers the signal scattered at the same q⃗  from an ensemble of dif-

ferent “domains” in the sample, characterized by the same dynamics.

This is a critical condition that can be problematic to obtain in systems characterized by 

macroscopic domains that moves cooperatively ([15]), from here the necessity to have a co-

herence  volume  that  contains  a  significant  number  of  domains.  The  importance  of 

g1(q⃗ , t)  function is that it can be predicted by numerical simulations under reasonable 

conditions.

3.2.2 Models of dynamics

In this section some model of dynamics will be reviewed, to illustrate how the micro-

scopic mobility properties affect the measured correlation function. We will start with the 

case of Brownian diffusive motion, and from there we will move on to complex models 

that account for other factors.

3.2.2.1 Diffusive Brownian motion

As  an  illustration,  consider  now  a  simple,  monodisperse,  suspension  of  spherical 

particles undergoing Brownian motion: if the particles are not interacting between them, 

their positions are statistically independent, and follow a Gaussian probability distribution:

P(Δ R⃗ ' (τ)) = ( 3
2π6D0 τ )

3
2 exp(−3ΔR2

(τ)

26D0 τ )  (24)
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In this expression  D0 , the diffusion coefficient for a free particle, is given by the 

Stokes-Einstein equation:

D0=
k B T

6πηa
〈ΔR2

(τ )〉 = 6D0 τ  (25)

where k B  is the Boltzmann's constant, T  the temperature, η  the liquid viscos-

ity and a  the particle's radius ([16]).

The intermediate scattering function is then written as:

f (q⃗ , τ) = ∫exp (i q⃗⋅Δ R⃗(τ)) P(Δ R⃗(τ )) d3
ΔR

= exp(−
q2

6
〈Δ R⃗(τ)〉) = exp(−q2 D0 τ)

 (26)

Referencing to eq. 22 we can now write the g2(q⃗ , τ)  as

g2(q⃗ , t) = 1+βexp (−2 D0q2 t)  (27)
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Figure 3.13: g1(q⃗ , t)  function measured by DLS on a low concentration suspension  
of PMMA particles (R=90nm) as reported in ref. [17] . Continuous lines are the best fit 
lines obtained with eq. 27.



The factor D0 q2  is usually written as 1/ τc , marking with τc  (also called relax-

ation time) the necessary  time for the system to rearrange its structure on a length scale 

defined by q . In the case of pure diffusion, as in the  brownian motion, τc scales as 

∝1 /q2 , and thus it strongly increases for small wavevectors, or large length scales.

3.2.2.2 Dynamics of complex disordered systems: stretched exponential functions

The previous simple expression of eq. 27 does not hold when the interactions between 

particles are not negligible any more.

Many disordered materials, like molecular glasses, polymers, gels and other soft materi-

als undergo structural arrest (an abrupt slowing down of the dynamics not associated to 

structural changes)  and physical ageing  (a change in the dynamics parameters in macro-

scopic time scale). In fact, by modifying different characteristics of the system (like the 

temperature,  the  packing fraction,  or the polymer concentration) these materials  can be 

driven in an out of equilibrium configuration, where the dynamics slows down enormously, 

and strongly depends on the sample age or waiting time (see for examples Ref.  [18] and 

Ref.  [19]).

The slowing down of the dynamics leads to a complex shape of the intermediate scatter-

ing function which can not be any more described by a single exponential decay, as is the 

case in Brownian motion.

This effect has been accounted for by two complementary approaches: Mode Coupling 

Theory  (MCP, [20]) and Potential Energy Landscape (PEL, [21]) .

MCT describes the local dynamics of molecules in the supercooled liquid phase close to 

the glass transition temperature ( T G ): every particle results confined in a “cage” by col-

lision with  its neighbours, so that after an initial decay due to microscopic collisions inside 

this cage, the correlation function shows a plateau followed by a secondary decay on longer 

time scales, that is associated with “cage breaking”. This two movements are characterized 

by two different τc , as shown in Fig. 3.14.
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Approaching the glass transition, the viscosity of the system increases enormously and 

the particles need a longer time to escape their cages, giving rise to a much longer plateau 

in the intermediate scattering function.

To describe the nature of the process leading to the dynamical arrest in the glassy states, 

the PEL tackles the problem from the thermodynamical point of view (see Fig. 3.15): plot-

ting the energy landscape described by the phase-space accessible by the liquid. During 

small relaxation times the system can only travel around the local minima, and to find the 

“true glass” minimum needs longer times, to access configurations that are further away in 

the phase-space.
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Figure 3.15: A schematic representation of a potential energy profile plotted in  
function of a generic coordinate in the phase space.

Figure 3.14: Typical intermediate scattering function for a supercooled liquid 
near the temperature T G  that brings it in the glass state. It shows the 
double decay typical of the two type of dynamics involved in the process



An example of the slowing down of the dynamics when a system approaches the glass 

transition is reported in Ref. [22]  (as shown in Fig. 3.16), in the case of PMMA suspen-

sions at high packing fractions were observed. 

In this case (like many other arrested system like polymeric, gel or glassy one, character-

ized by soft or even weakly attractive interaction potentials) the correlation function typic-

ally  assumes   complex  behaviours,  and  are  usually  empirically  described  by  the 

Kohlrausch-Williams-Watts (KWW) function in the form:

g2(q⃗ , t) = 1+βexp [−2 (t / τ)γ ] . (28)

The exponent γ  is the shape parameter. We have seen that a value of γ=1  is typ-

ical of Brownian motion (as shown with eq. 27), while this system assumes values γ<1

, which correspond stretched exponential behaviour.

Two different approaches could describe these observed deviations from the simple ex-

ponential  decay:  the spatially dynamical  homogeneous  scenario,  and the  heterogeneous 

one. In general, any correlation function can be cast into form of superposition of exponen-

tials with some appropriate probability density ρ(τ)  for the relaxation times τ
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Figure 3.16: Intermediate Scattering function measured by DLS on high concentrated suspension of PMMA 
particles (R=260nm), as a function of different packing fraction. Taken by Ref. [22] 



g2(t) = ∫
0

∞

ρ(τ)e−t / τd τ = 〈exp(−t /τ)〉 . (29)

In this way, it is evident that there are many different ways of introducing a distribution 

of time scales which lead to the same deviation from simple exponential pattern, after aver-

aging over the ensemble of the relaxing units, as schematically described in Fig. 3.17:

In the left side, the “spatially homogeneous” scenario, the stretched behaviour is an in-

trinsic property of the system: each site within the sample contributes identically to the re-

laxation function, such that local and ensemble averaged dynamics are the same. In the oth-

er extreme, the “spatially heterogeneous” approach on the right side of  Fig. 3.17, every re-

gion in the system is characterized by purely exponential dynamics, but whose relaxation 

times τ  varies both in space ad time. Averaging over all the different region gives rise to 
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Figure 3.17: Schematic representation of two different sources of non-
exponential correlation decays ([23]) 



the stretched behaviour of the ensemble. In the last years, several simulations and experi-

ments have directly established that the dynamical slowing down encountered in glassy ma-

terials is accompanied by the existence of a growing correlation length scale over which 

local dynamics is spatially correlated, the so called cooperatively rearranging regions intro-

duced in [15], hence supporting supporting the heterogeneous scenario ([24]).

3.2.2.3 Dynamics of complex disordered systems: compressed exponential function

Differently from the above mentioned two systems, in some complex materials the slow-

ing down of the dynamics can be described by a faster than exponential decay. In this case 

the intermediate scattering function can always be described by Eq. 28 but with a shape ex-

ponent γ  larger than one. This is the case for instance of different gels, polymers, metal-

lic glasses, nanoemulsions, etc. (Refs. [9], [25], [26] or [27], [28], [29] ).

To account for compressed exponential behaviour (Eq. 28 with γ>1 ), the model au-

thor by J.-P. Bouchaud and E. Pitard ([30]) computes the dynamical structure factor of an 

elastic medium characterized by random micro-collapses that appear at random in space 

and time, generating force dipoles that rearrange the local structure. This model suits the 

needs of an ideal elastic colloidal gel  sample,  where the particles aggregate when they 

come near enough one to each other, generating a field of mechanical stresses. 

The model predicts that the correlation functions of the system decay as a compressed 

exponential with a shape factor γ=1,5 , when the relaxation time is much faster than the 

time scales of the collapses. This value for the compression exponent is accompanied by a 

inverse proportionality of the relaxation time in respect  to  the exchanged momentum (

∝q−1 ), while the Brownian motion is characterized by a τ  proportional to q−2 .

3.2.3 Ageing systems: the two-time correlation function

Many systems (complex soft materials glasses...) are characterized by history dependant 

properties. In this case their dynamics is not stationary, and the system will display physical 

ageing: this means that any physical observable will evolve with waiting time or sample 

age.

In this case the temporal average employed in calculation of g2(q⃗ , t) could mask this 

kind of variation, instead a good description should contains information on how the dy-

namic changes through time.
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The temporal evolution of the dynamics can be directly captured by XPCS calculating 

the so called two-times correlation function:

G(q⃗ , t 1, t 2) =
〈 I ( q⃗ ,t 1) I (q⃗ , t 2)〉V
〈 I (q ,t 1)〉V 〈 I (q , t 2)〉V

 (30)

where subscript V  indicates averaging over the scattering volume. The result is a func-

tion of two temporal values, usually represented in a 2D graph such as the one reported in 

Fig. 3.18.

This function represents the instantaneous correlation between two times t 1  and t 2  

and it is a time-resolved version of the g2(q⃗ , t) . It has his maximum along the low-left / 

up-right diagonal (where t 1=t 2  increases), representing the I ( q⃗ ,0)  as a function of 

the sample age thorough the measurement. For every point of the diagonal, the decaying 

values along the perpendicular direction (following the time delay Δ t=t 2−t1 ) gives the 

“instantaneous” correlation function at a given age.

If the dynamics is stationary, or the changes due to ageing are slower with respect to the 

time  interval  Δ t=t 2−t1  chosen,  then  the g2(q⃗ , t) can  be  retrieved  averaging  the 

G(q⃗ , t 1, t 2)  in this fixed time delay :

g2(q⃗ , t) = 〈G (q⃗ , t1,Δ t)〉Δ t  (31)
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Figure 3.18: left panel, example of two-times correlation function. Right panel: same data with simple 
indications to read the graph: ([31])



On the left side of Fig. 3.19 is represented an example of a two time correlation function 

measured by us in the case of a Pd77Si16.5Cu6.5 metallic glass at 180°C. The shaded areas in-

dicates the first two regions where g2(q⃗ , t) is calculated using eq. 31: the centre of the 

area is the age t 1  of the sample at which we are evaluating the instantaneous correlation. 

The wideness of every area along the diagonal is the Δ t=t 2−t1  along which the func-

tion is averaged: larger Δ t  means better statistic, but less specific information. It is im-

portant to select a range for the average in which the dynamic is consistent.

The two-times correlation functions can give many informations on a glance, as shown 

in the two literature examples in Fig. 3.20: the figure on the left is taken from Ref. [27] . 

The system investigated in the article was a chemically cross-linked resorcinol-formalde-

hyde (RF) polymer gel. Gel system usually shows very complicated structures, depending 

on temperature, solvent condition, molar ratio of the chemical, reaction time, etc. The fig-

ure is used to show that in a 10 minutes window, the dynamics of the system is stable and  

the g2  can be time-averaged over ~10 minutes without loss of information.
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Figure 3.19: left panel: two times correlation function with two  different time intervals highlighted. The 
arrow hint at the other series reported in the right panel but not highlighted  Right panel: correlation 
functions calculated over several different time intervals.



Instead the right plot, took from Ref. [25] , shows a  metallic glass (Mg65Cu25Y10). The 

system is prepared  melting the metals to the liquid states, and then cooling them down at 

extremely high rate (106 °K/s) from the melting point to room temperature . The sample is 

then measured at different temperatures, showing dynamics that depends not only from the 

current state but also from the history of the sample (past temperatures, cooling/heating 

rates, etc...). This specific plot is relative to a two times correlation function taken after 

bringing the  sample  up  in  temperature.  The system starts  to  relax  the  internal  stresses 

“frozen” by the rapid quench, and moves towards a configurations characterized by slower 

dynamic.  g2(q⃗ , t) functions can then be time averaged for better statistics (as in  3.20 

(b)), integrating on time lapse small enough that the “rift” along the diagonal keeps the 

same width.

In many systems the ageing is usually accompained by the presence of temporal hetero-

geneity. These fluctuations in  G(q⃗ , t 1, t) , ca be measured by the normalized variance 

([32], [33]):

χ (q⃗ , t)=
〈G(q⃗ , t 1, t)〉t1

−〈G(q⃗ , t 1, t)〉t1

2

(g 2(q⃗ , 0)−1)2
 (32)
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Figure 3.20: examples of two times correlation functions. On the left: An resorcinol-formaldehyde polymer 
gel taken from Ref. [27] . The contours parallel to the diagonal shows that the dynamics is not changing over  
the 10 min interval. On the right: Ageing in a out of equilibrium metallic (Mg65Cu25Y10) glass at T=318°K, 
from Ref. [25] . a)Two times correlation function, the broadening of the red-yellow ridge shows the slowing 
down of the dynamics. Inset b) from left to right g2(q⃗ , t)  functions for different sample ages at 4680 s, 
9840 s and 12960 s 



 As an example, see Fig. 3.21: the broad maximum at around 0.5-1 s is a consistent hint of 

dynamical heterogeneity in this time scale .

If the variance analysis suggests some time that can have meaningful variation, the four 

times correlation function g4(q⃗ , t , τ̃)  can be calculated, defined as

g4(q⃗ , t , τ̃) = 〈C (t1, t 1+τ̃)C (t 1, t1+t , t1+t+τ̃)〉t 1

= 〈I (t1) I (t1+τ̃) I (t 1+t) I (t 1+t+τ̃)〉t1

 (33)

The first lag time τ̃=∣t1−t2∣ , (in Fig.  3.21 indicated by the lighter stripe) indicates 

the selected subdiagonal of the G(q⃗ , t 1, t)  along which g4(q⃗ , t , τ̃)  is calculated. The 

second lag time,  t , corresponds to the separation between two instants of the selected 

diagonal. Averages are performed over the initial time t 1 .  This quantity gives informa-

tion on the periodicities of the temporal heterogeneities.
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Figure 3.21: Two times correlation function for a 7nm gold nanoparticles film, suspended at the air-water 
interface. The (a) inset on the left shows the two times correlation function, and the white band is a guide to 
the eye that shows the range over which the variance is calculated. The inset (b) shows the total variance 
χ  of the G(q⃗ , t 1, t) ([9]).



4 The experiment

The XPCS measurements were executed  at the soft interfaces and coherent scattering 

beamline  ID10 at  the  European Synchrotron  Radiation  Facility (E.S.R:F.)  in  Grenoble, 

France  in grazing angle geometry: the sample was placed in a Langmuir trough, and a 

monochromatic X-ray beam with a wavelenght of 1,55 Å (7,99 keV), 10x10 μm in size 

was directed towards the surface with an angle of 0,119°. 

The scattered speckles were collected with a 2D Maxipix detector in the neighbourhood 

of the reflected beam from the surface, covering  a q⃗  range from 0,001 to 0,004 Å-1.

4.1 Beam shaping: the ID10 beamline at ESRF

A schematic representation of the ID10 beamline at ESRF, is shown in Fig. 4.1

The X-ray beam is generated when the electrons in the storage ring pass through the un-

dulators. The source size is then defined by a primary and a secondary sets of slits, placed 
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Figure 4.1: Schematic representation of the ID10A beamline with typical element distances.



respectively 27 m and 33 m from the undulators source. Reducing the effective source size 

increases transverse coherence length ξT .

A set of Beryllium Compound Refractive Lenses (CRL), located 34 m from the source is 

used to focus the beam at the sample position (46 m). This element is followed by another 

set of slits that cuts higher harmonic radiation: since the focal distance decrease with λ , 

the high energies photons are less collimated, and a good portion of them can be removed 

by the slits (see Fig. 4.2), providing a first selection in energy and reducing the heat load on 

the subsequent optics elements.

A single-bounce Si crystal monochromator, placed 44.2 m downstream allows to tune 

the longitudinal coherence length (see Eq. 8) by selecting a monochromatic beam. The loc-

al optics, present in the experimental hutch downstream of the monochromator, include a 

double Si mirror to suppress higher order reflections (since the critical angle is different). A 

set of highly polished high-precision slits with cylindrical edges, placed just upstream of 

the sample, at 45.5 m, defines the final beam size. With the partially coherent beam, these 

slits produce a parasitic scattering pattern, which can be removed by placing guard slits just 

a few centimetres before the sample.

4.1.1 Undulators

An undulator is an insertion device, inserted in the Synchrotron storage ring. It consists 

of two rails with a series of magnets, with alternating polarity, designed to make the elec-

trons oscillate back and forth. At each oscillation the electrons emit radiation.
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Figure 4.2: The focus of the CRLs depends on the incoming energy. As the energy of the photons 
increases (shown in false colours from red, lower energy, through green to blue, higher energy) 
the lenses focus the beam further. A slit placed just after the CRL can be used to stop higher 
harmonics generated from the undulator, and reduce the heat load on the monochromator.



The magnets in the undulator are spaced in a way that all the emitted radiation with a 

given wavelenght interfere coherently at the end of the undulator. This schematically shown 

in the right panel of Fig 4.3. Consider the wave emitted by the electron in point A. After a 

time T '  the electron is in point B and emits again. At this moment the wave emitted in  

A is already in position  cT ' . The idea is setting the velocity of the electrons and the 

magnetic field emitted by the undulator so that the waves of wavelength λ  emitted in 

subsequent oscillations  interfere constructively.

The condition for  coherence is  that  the distance  cT '−λu  equals  one wavelenght 

λ  (or a multiple thereof), being λu  the period of the magnets inside the undulator.

When this conditions are fulfilled, also the divergence of the power emitted decreases, 

as the wavelength that carries the most power ( λ ) do not interfere constructively when 

observed off-axis.

The parameter T '  can be modified by changing the distance between the two mag-

netic rails, in oredr to vary the strength of the magnetic field generated by the magnets: 

somewhat counter-intuitively a larger field produces a softer X-ray fundamental (larger val-

ues of λ  correspond to less energy per photon).

The undulators have a number of advantages over sources that use only the effect of the 

magnetic field on the electron to generate X-ray (for example bending magnets and wig-

glers). As the emitted radiation has a narrower spectrum centred on the used wavelength, or 

the the heat load on the subsequent optics elements will be lower in respect of another kind 

of source of the same power, or, at least, it will all be due to useful radiation.

A detailed review of the device, with a derivation of this results can be found in Ref. 

[12] or Ref. [34].
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Figure 4.3: on the left a scheme of the undulator, with in red and green the two series of alternating magnets,  
and in yellow the trajectory followed by the passing electron and the small cones representing the emitted 
radiation. On the right the radiation seen by a on-axis observer, result of the interference of the waves 
emitted at each crest of the trajectory.



4.2 Sample placing / Air-water interface measurements

A Langmuir trough was mounted on the spectrometer (see Fig. 4.4), mechanically isol-

ated from the rest of the system via an anti-vibration table.  The Langmuir trough  has a 

single teflon barrier, and it is controlled by R&K3 hardware. The total area can be varied in 

the range 106 -  687 cm2. The dimensions of the trough are dictated in order to minimize 

meniscus-related effects,  and this  limits  the reachable compression ratio.  The Langmuir 

setup includes also a Wilhelmy balance, manufactured by NIMA.

The whole setup is covered by a plexiglass cap equipped with Kapton windows in the 

beam path, and helium is continuously flushed in the chamber, to provide a controlled at-

mosphere that limits both parasitic scattering and radiation damage on the sample. 

4.3 Detector

The scattering from the sample was collected with a 2D MAXIPIX detector, consisting 

of a matrix of 256x256 square pixels each one of 55x55 μm  ([35]), and located 2050 

mm far from the sample.  This geometry corresponds to a covered  q⃗  range between 

0,005 and 0,2 nm-1.

The diffraction pattern arising from the Langmuir film is anisotropic, hence for the ana-

lysis the pixels have been grouped into square sections. As indicated in  Fig.  4.5 each of 
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Figure 4.4: Photos of the Langmuir trough used for the XPCS measurements at the air/water interface.



them is identified by two components of the exchanged momentum, q⊥  and q∥ , per-

pendicular parallel respectively to the water surface.
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4.4 Measurements protocol

During the measurement the footprint of the X-ray beam on the sample surface was of 

10 μm x 4,7 mm . 

In order to avoid radiation damages on the film ad to explore different sample positios, 

the illuminated region was moved after every measurement by moving the trough.

 Several series of data were collected at different pressures  between 8 and 14 mN/m, 

taking sets of  10.000 images, at 100 ms interval between each other.t 
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Figure 4.5:  Measured diffraction pattern of the 2D film, with superimposed the mask used for the 
analysis. The missing pixels in the mask have been automatically excluded.



5 Results and discussions

5.1 Data analysis

5.1.1 The two-times correlation function

As discussed  in  chapter  3.2.3,  the  dynamics  of  out  of  equilibrium system can vary 

greatly during the time employed for the measurements. This effect can be achieved by 

looking at the two-times correlation function G(t1, t 2) .

We checked the presence of ageing in the sample in the investigated time frame, in order 

to decide for how long we can consider the dynamics stationary and to find a meaningful 

time interval for the calculation of the autocorrelation function g2(q⃗ , t) . 

An example is reported in Fig. 5.1 for the G(t 1, t 2)  function calculated at the smaller 

investigated q⃗ (  q∥=0.0045 Å−1  and q⊥=0,0005 Å−1 ) at 12 mN/m, for the whole 

1000 sec period (10.000 images, panel a). In the panel b,c and d, the G(t 1, t 2) functions 

calculated in smaller intervals are reported as well. These last panels are thus equivalent to 

details around the main diagonal of the figure shown in panel a.
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In all the panels the scattered intensity gives rise to a thin yellowish line along the main 

diagonal. As explained in chapter 3.2.3, the broader the intensity in the two times correla-

tion function, the slower the dynamics in the system. Hence, our data are a clear signature 

of fast dynamics. From the analysis of partial G(q⃗ , t 1, t 2)  reported in panels b,c,d, it is 

evident that only random fluctuations occurs, and none consistent trend of ageing is evid-

enced in the investigated time scale. This means that integrating eq. 16 over long or short 

time windows will just enhance statistics without overlooking important details in the de-

scription of the dynamics. 

In order to better understand the observed fluctuations in the G(q⃗ , t 1, t 2)  we check the 

presence of temporal heterogeneities by calculating the corresponding variance  χ  of 
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Figure 5.1: G(q⃗ , t 1, t 2)  measured for q∥=0.0045 Å−1  and q⊥=0,0005 Å−1 at 

Π=12 mN/m and different time intervals.



G(q⃗ , t 1, t 2)  (see chapter 3.2.3 for more details). Fig. 5.2 shows the temporal dependence 

corresponding variance χ , normalized by the contrast parameter obtained from the ana-

lysis of the intensity correlation function, as explained in the ext section.

A feeble peak might be observed at very short times. As will be shown later, this value is 

much shorter than the characteristic time τ of the autocorrelation functions. This result is 

not unexpected, as a similar peak has been already observed also in other colloidal systems 

([9]). Unfortunately, given the small intensity of the peak, and the low temporal resolution, 

it  is not meaningful to proceed to the analysis of the 4 th order correlation function (see 

chapter 3.2.3).

5.1.2 Analysis of the correlation function

5.1.2.1 Fit strategy

Since the dynamics does not show any ageing in the period under scrutiny, we have pro-

ceeded to calculate the correlation function g2(q⃗ , t)  for the whole available range.

This relaxation dynamics (a example is reported in Fig.5.3) can be well described by the 

KWW function showed in eq. 28, which reads:

g2(q⃗ , t) = A+β exp [−2(t /τ )γ]  (34)
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Figure 5.2: normalized variance of the two times correlation function 
reported in Fig. 5.1



In simple terms the different parameters can be linked to different curve features:

• the baseline A  is the long time limit of  the correlation function;

• the  contrast  β  characterizes the short time limit, and is related to the Siegert 

factor (eq. 22 and Ref. [10]) ;

• the  relaxation  time τ  is  to  the  time  when  the  function  reaches  the  value 

A+0.13β . Changing it results in an horizontal translation on the semi log plot.

• the shape γ is linked the angle of the tangent in the flex point (always in the in 

semilog plot).

The parameter  A ,  called also baseline,  is  the first  parameter to be fitted: as it  is 

clearly the value assumed by the function for t→∞ , it is found evaluating the mean of 

the value of the function at long time (the part in the upper right inset in Fig. 5.5). As the 

correlation function is integrated on a finite  time and the data are not continuous, as t  

increases every value of the correlation function is averaged over less pairs of points, so 

that the last  points have always worse statistics than the first  ones. That's why the last 

points are excluded to calculate A .

After A  has been determined,  the parameter is fixed and the other three parameters 

are fitted on the first part of the data (on the left side of  the vertical black dashed line in 
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Figure 5.3: in blue the g2(q⃗ , t)  measured at Π=12mN /m , together 

with the best fit line which gives A=1,0244 , β=0,0185 , τ=1,16 s, 

γ=1 . The inset shows the same function at longer times. The grey notes are a 
guide to the graphical meaning of the fit parameters.



Fig. 5.3), so that the algorithm doesn't weight too much the less meaningful points on the 

right side, seen that their contribution is already been taken in account fixing A .

It is evident that the KWW can well reproduce our experimental data. Small deviations 

are observed in the tail of the decay. Similar behaviour have been reported for other com-

plex soft materials and are signatures of a more complicate relaxation process at longer 

time scale,  which consequently would require a much complex expression than eq.  34. 

Anyway the quality of the fit at shorter times shows how the KWW can still be used to re-

produce the main part of the relaxation process.

5.1.3 The Shape properties

Table  1 reports  the  results  of  our  data  fits  for  the  same  q⃗ ( q∥=0,0045 Å−1 , 

q⊥=0,0005Å−1 ) for different series with increasing ad decreasing surface pressure of 

the film:

• the first column lists the chronological order of the measurment;

• the second reports the pressure at which the measurements have been taken;

• the third, fourth and fifth show the results of the fit for the parameters indicated in 

title (shape γ , relaxation time τ  and contrast β ).

It is interesting to note that the shape of the decay results is always lower than one, lead-

ing to a stretched exponential behaviour ( γ<1 ). As shown in the white columns of the 

table, both the shape parameter ad the contrast factor vary randomly upon changing the 

pressure. These fluctuations are probably related to the lack of a complete information on 

shorter times dynamics. Unfourtunatley, due to technical problems, we could not achieve 
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Series
Π

(mN/m)
Shape 
γ

Relaxation Time - τ Contrast - β

γ fitted γ =1 γ fitted γ =1

1 10 0,5 ±0,1 0,2 ±0,1 0,39 ±0,08 0,025 ± 0,03 0,011 ±0,005

2 12 0,9 ±0,1 0,81 ±0,05 0,83 ±0,05 0,025 ±0,003 0,024 ±0,005

3 14 0,7 ±0,1 1,1 ±0,1 1,26 ±0,10 0,019 ±0,003 0,015 ±0,002

4 12 0,7 ±0,1 1,3 ±0,1 1,38 ±0,11 0,024 ±0,002 0,019 ±0,002

5 10 0,7 ±0,1 0,8 ±0,05 0,91 ±0,08 0,034 ±0,006 0,027 ±0,003

6 12 0,6 ±0,1 0,5 ±0,05 0,67 ±0,07 0,035 ±0,007 0,023 ±0,005

Table 1: Comparison of fit results with parameter Shape fixed at 1 (grey columns) or kept free (white 

columns) for various surface pressures at the same q∥= 0,0045Å−1 , q⊥ = 0,0005Å−1



smaller time scale and get a better estimation for the shape parameter. For this reason, we 

analyse our correlation functions by keeping the shape γ  fixed at γ=1 : the corres-

ponding results for τ  and β  are shown in the grey sub-columns in Tab. 1. 

A comparison between the two different fitting procedures is show in Fig. 5.4 for differ-

ent sets of data. It is clear that this procedure does not affect the values of the relaxation 

time, and so, for now on, we will discuss only results with the shape fixed at γ=1  if not 

stated otherwise.
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Figure 5.4: Examples of data and fitted correlation functions for different pressures: the green curves show 
the fit with γ fitted,the red ones the results with γ=1 . The data are measured at 

q∥=0,0045 Å−1 and  q⊥=0,0005 Å−1  at different pressure, (a) at 12 mN/m, (b) at 14 mN/m, (c) 

at 10 mN/m and (d) at 12 mN/m



The shape parameter value can be taken as a signature of the interactions present in the 

system: as we have seen one expects  γ=1  for Brownian motion while  γ=1.5  is of-

ten found in colloidal gels [29].

5.2 Wavevector dependencies

From the analysis of the XPCS correlation functions, we get detailed information on the 

structural relaxation, and in particular we measured the characteristic time τ , which thus 

represents how fast the structure can rearrange itself to an equilibrium position. As we have 

seen in section 3.2.2 the dependence of this parameter from the wavevector at which is ob-

served gives information on the nature of the dynamics present in the system. As an ex-

ample, Fig.5.5 shows the values of τ  as a function of the exchanged wavevector q⃗ .

5.2.1 Perpendicular wavevector

The first result is that within the experimental uncertainty there is no detectable depend-

ency of the dynamics parameters from q⊥ (see Fig. 5.5 for an example). This is natural 

for a 2D system. The lack of any q⊥  dependence indicates that there is no motion per-
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Figure 5.5: Values of the relaxation time τ  in the reciprocal space , as a function of 
q⃗ , measured at a surface pressure Π=12mN /m .



pendicular to the surface through the air-water interface, as it could be the case e.g. for col-

lapsing 3D nanostructures.

5.2.2 Parallel wavevector

The dependence of the structural relaxation times from q∥  is reported in Fig. 5.6 For 

the data measured at Π=12mN /m after averaging over q⊥  to improve the signal to 

noise ratio.

The time τ  strongly decreases as a function of  the wavevector q∥ , and it can be 

well described by the power law:

τ ∝ q∥
N  (35)

With N∼1 .  Similar τ ∝
1
q

 dependence have been observed in many different arres-

ted systems ([36]), such as oil nanoemulsion ([28]), colloidal polystyrene gels ([37]) and in 

molecular layers of polymers ([38] ). In most of the cases however the correlation functions 

show compressed shapes ( γ>1 in the KWW expression) in disagreemet with our res-

ults.  We recall that in our case the correlation functions have been fitted to a exponential 

decay ( γ=1  in the KWW expression, as discussed in section 5.1.3). This might suggest 

2D Brownian diffusion. However, this hypothesis must be ruled out, as a Brownian diffu-
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Figure 5.6: Relaxation times τ  measured at different q⃗∥  for Π=12mN /m . The  

fcorrespond to the best fit line obtained by using relation τ∝qN , which gives a parameter 

N=−0.94 . The dotted line shows the τ∝q−2 dependence expected for Brownian diffusion.



sion dictates a τ ∝ q∥
−2  behaviour (dotted line on Fig. 5.6) in sharp contrast with our 

results.

To the best of our knowledge no detailed theoretical model is available which fits this 

situation and further investigation is required.

5.3 Surface pressure dependence

The system is not in thermodynamic equilibrium, hence variation in the avaible area

A ,  and  consequently  of  the  surface  pressure  Π ,  can  produce  different  effects 

depending on the history of the sample. A nice example of this was shown in the case of the 

isotherm cycle reported in the chapter 2.2.3 (Fig. 2.9).

In Fig. 5.7 we report the relaxation time as a function of the surface pressure Π at the 

wavevector  q∥=0,0045 Å−1 ,  q⊥=0,0005 Å−1 .  Similar  trend has  been observed for 

other q⃗ . On increasing the pressure the dynamics slow down and τ  evolve from 0.4 s 

at  Π=8mN /m to  ∼1.3mN /m :  this  effect  can  be  rationalized  in  terms  of  free 

volume theories (in this case free area), more compacted particles are less mobile and dis-

play longer relaxation times. However this “natural” point of view cannot describe the be-

haviour observed upon reduction of surface pressure from 14 to 13 mN/m (from 4 to 5 in 

Fig.  5.7).In this case the structural relaxation time seems ot to be affected b the pressure 

changes:  this is probably a sign that the previous compression triggered a reconfiguration 

of the system.
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Figure 5.7: Showing relaxation time measured at q∥=0,0045 Å−1  and 

q⊥=0,0005 Å−1  as a function of the surface pressure. The arrows show the order in the 

compression/decompression cycle.



Further reduction of the pressure results in a slow loosening of the 2D film structure and 

hence an acceleration of its dynamics, which remains however slower than it was at the 

very same pressure before the compression (point 6 and 2 in Fig. 5.7). This is due to the ir-

reversible character of the inter-particle interaction: when two particles come close enough 

to form a bond state they will remain linked even after the Π  has been reduced.

If the film is compressed again from 10 to 12 mN/m (6 to 7)  τ  decreases, and the 

system reaches a similar situation as under the first compression procedure.

5.4 Comparison with the 7nm particles film

As it was discussed in chapter 2, our system has been prepared from an “older” version 

of the suspension already studied in Ref.  [9]. In the “younger”sample, the nanoparticles 

were 7 nm in diameter and the film showed a more homogeneous morphology.

Fig  5.8 shows a comparison between the relaxation times observed at the same  q⃗

range and for comparable values of surface pressure.

In both cases τ is of the order of  1 s, and is inversely proportional to the parallel ex-

changed wavevector q∥ . 
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Figure 5.8: relaxation times τ as a function of the paralell wavevector q⃗∥  exchanged for the 7 nm 
(on the left) ad the 80 nm (on the right). The series on the left (taken from [9] ) corresponds to a surface 
pressure of 15 mN/m., while the one on the right was taken during this experiment at 14 mN/m. Note how the 
τ  values are comparable and the relation τ=q∥

−1  fits well both sets of data. 



Differently  from the dynamics observed in the 7 nm particles film, which shows faster 

than exponetial correlation function with a Shape parameter γ  of 1.5, our  g2(q⃗ , t)  

can be described by a purely exponential shape. 

We recall here that compressed shape is generally understood as a signature of internal 

stresses relaxation ([30]) which seems to be more important in the 7 nm particles film. The 

observed shape in our system can be interpreted has a consequence of the heterogeneity of 

the sample: the scattering volume comprehend very different regions, that are in all probab-

ility characterized by very different dynamics and relaxation times. The mean effect of a 

distribution of this kind is compatible with a stretched exponential.
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6 Conclusions

In this Thesis work we have presented a detailed investigation of the dynamical proper-

ties of a Langmuir film of 80 nm gold nanoparticles, functionalized with dodecanethiol.

The internal dynamics of the system was measured by means of X ray photon correlation 

spectroscopy, on the mesoscopic spatial scale corresponding to tens/hundreds of nanometer, 

and for different surface pressure values.

We find that the dynamics is stationary in the time scale investigated by the measure-

ment. 

Small fluctuations in the intensity of the two times correlation function are observed, 

which could be related to the presence of fast temporal heterogeneities as suggested by the 

analysis of the variance of G(q⃗ , t 1, t 2) . Unfortunately, a deeper investigation would re-

quire a better temporal resolution, which was not possible due to technical problems.

The dynamics of the spontaneous microscopic fluctuations can be well  described by 

single exponential function, characterized by a structural relaxation time τ of the order 

of ∼1s . 

A  wavevector dependence study shows that the dynamics is confined to the surface of 

the film, as a consequence the structural relaxation time depends only on the parallel com-

ponent of the wavevector q∥ . In particular we found that τ  grows as the inverse of 

the exchanged momentum, τ∝q∥
−1  for every investigate pressure.

Differently, an isothermal cycle of compression ad decompression, leads to an hysteresis 

in the structural relaxation times, which is likely due to the irreversible character if the in-

tra-particle short rage attraction.
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A comparison with a similar system with 7 nm nanoparticle, suggests the presence of a 

more heterogeneous dynamics on increasing the nanoparticles diameter, which is reflected 

on the more stretched shape of the intensity autocorrelation function.

It would be interesting to observe the system on a shorter time scale, and observe the 

evolution of the system for different intermediate nanoparticles dimensions.
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7 Appendix A: Relaxation dynamics and ageing in 
metallic glasses

The behaviour of glass forming systems is  broadly recognized as being rich in phe-

nomenology both in the supercooled and in the glassy state. Despite of the large efforts 

done in the last decades, many aspects remain poorly understood and the understanding of 

the glassy state is still considered as one of the most challenging topics in condensed mat-

ter.

In general a glass can be viewed as a liquid in which a huge slowing down of the diffus-

ive motion of the particles has destroyed its ability to flow remaining frozen in a metastable 

state, from which they slowly evolve or age towards the corresponding supercooled liquid 

phase. In fact the most common way to produce a glass consists on cooling a liquid fast 

enough to avoid crystallization.

The scattered intensity was measured by an IkonM charge-coupled device (CCD) from 

Andor Technology which consists of 1024 × 1024 pixels, with 13 × 13 mm2 pixel size. The 

 64

Figure 7.1: Photo of the setup used for the measurements



transmitted scattered intensity was collected at a distance 0.68m from the sample and in a 

wide angle configuration, specifically at a scattering angle 2θ  = 40.6° with respect to 

the incident beam, as shown in Fig. 7.1. 

In this way all pixels of the CCD were considered to belong to the same wave vector 

q⃗0=2.81 Å−1 , corresponding to the maximum of the static structure factor of the system, 

allowing us to investigate the dynamics at the inter particle distance of  2π/ q⃗0∼2 Å . Fo-

cusing on the slow dynamics, we collected time series of up to about 2000 images with 7s 

exposure time per frame. The data were treated and analysed following the procedure de-

scribed in Ref. [39] . 

Figure  7.2 shows the two times correlation function measured in  Pd77Si16.5Cu6.5 in the 

glassy state at T=453K. Differently from the 2D film investigated in this Thesis, here the 

dynamics is not stationary and the structural relaxation time increases with the sample age. 

The ageing is illustrated by the broadening of the diagonal contour as the sample age in-

crease.
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Figure 7.2: Two times correlation functions for Pd77Si16.5Cu6.5, measured at 
q⃗0=2.81 Å−1  and T=453K .



Although the dynamics is not stationary, the ageing is sufficiently slow that it is possible 

to find time intervals over which the  G(q⃗ , t 1, t 2)  can be averaged and thus to get the 

standard intensity autocorrelation functions which are reported in Fig 7.3 for different wait-

ing time %tw from temperature equilibration. 

Here the dynamics is very slow, being  τ in the order of thousands of seconds, and 

clearly shifts to longer values during the measurement. The data are here reported together 

with the best fit obtained by using the KWW function. Similarly to other metallic glasses 

([25]) the shape parameter  γ  is found to be compressed ( γ>1 ) and independent 

from the sample age. This means that it is possible to rescale all the curves in one single  

master curve by reporting the data as a function of the time rescaled by the structural relax-

ation time obtained from the analysis of the data, as shown in Fig. 7.4.
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Figure 7.3: Intesity correlation functions for Pd77Si16.5Cu6.5, measured at 
q⃗0=2.81 Å−1  and T=453K , for different waiting times from 

temperature equilibration.



The Fig. 7.5 shows the structural relaxation times as a function of the waiting time for 

all the reported correlation functions:  τ clearly grows up exponentially and can be well 

described by the empirical function

τ(T , tw)=τ0(T )exp(tw / τ
∗
) . (36)
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Figure 7.4: Same data as in Fig. 7.3 reported rescaled as a function of t /τ .

Figure 7.5: Waiting time dependence of the structural relaxation time. The red line is the 
best fit obtained with eq. 36



In this expression,  τ0  is the starting value of the structural relaxation time and de-

pends on the temperature T , and τ
∗  describe the rate of ageing. 

We find τ
∗
∼5000s  in agreement with the values reported for other metallic glasses 

([25]). As in those cases this fast ageing regime is likely to be related to the release of in-

ternal stresses stored in the system during the fast quenching used to produce the glass.
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